PART II - Answer Key

36(a). Brandon surveyed his classmates to see if they liked Action movies or Horror movies.

- 9 people like Horror movies
- 3 people like both Action movies and Horror movies
- 4 people like neither type of movie
- 20 people like Action movies

Draw a Venn diagram to determine how many people were surveyed in total.

3 36(b). 50 members of a sports club were surveyed:

Determine the number of people who play hockey AND golf but NOT tennis.

$$
\begin{aligned}
& 11-x+10+3+6+6+x+13-x+2=50 \\
& -x+51=50 \\
& -x=-1 \\
& x=1
\end{aligned}
$$

1 person

2 37(a). How many different arrangements of the letters MATHEMATICS are there?

$$
\frac{11!}{2!2!2!}=\frac{39916800}{2 \times 2 \times 2}=\frac{39916800}{8}=4989600
$$

37(b). David rolls a fair die and flips a fair coin. Use a graphic organizer such as a tree diagram or table to illustrate all possible outcomes.

Students may set up something like the following or have another suitable graphic.

37(c). How many 6 person committees can be formed from a group of 4 teachers and 30 students if there must be at least 3 teachers?
$\left({ }_{4} \mathrm{C}_{3} \times{ }_{30} \mathrm{C}_{3}\right)+\left({ }_{4} \mathrm{C}_{4}+{ }_{30} \mathrm{C}_{2}\right)$
$16240+435$
16675

37(d). Algebraically solve for n : $\quad{ }_{n} P_{2}=72$

$$
\begin{aligned}
& { }_{n} P_{2}=72 \\
& \frac{n!}{(n-2)!}=72 \\
& \frac{n(n-1)(n-2)!}{(n-2)!}=72 \\
& n(n-1)=72 \\
& n^{2}-n-72=0 \\
& (n-9)(n+8)=0 \\
& n=9, n=-8 \text { (reject) }
\end{aligned}
$$

38(a). When considering the total arrangements of the letters of the word FLOAT, what is the probability of the vowels (O, A) being together?
\# of Possible Arrangements with conditions $=4!2!=48$

Total Possibilities without conditions $=5!=120$

Probability $=\frac{48}{120}=\frac{2}{5}$

3
$38(\mathrm{~b})$. John likes to jog. If the weather is nice he is 80% likely to jog. If it is raining he is only 40% likely to jog. The forecast for tomorrow indicates a 30% chance of rain. What is the probability that he will jog tomorrow?

38(c). A recent survey indicated that 98\% of all high school students in Newfoundland have a cell phone and of these students, 40% have an I-Phone. What is the probability of a student owning a cell phone that is not an IPhone?

I = owns an I-Phone
$\mathrm{C}=$ owns a cell phone
$\mathrm{P}(\mathrm{I} \mid \mathrm{C})=0.4$
$\mathrm{P}\left(\mathrm{I}^{\prime} \mid \mathrm{C}\right)=0.6$
$\mathrm{P}\left(\mathrm{C} \cap \mathrm{I}^{\prime}\right)=\mathrm{P}(\mathrm{C}) \times \mathrm{P}\left(\mathrm{I}^{\prime} \mid \mathrm{C}\right)=0.98 \times 0.6=0.588$

39(a). Solve: $\quad \frac{2}{3 x}+\frac{5}{6}=2$
$\frac{4}{6 x}+\frac{5 x}{6 x}=\frac{12 x}{6 x}$
$4+5 x=12 x$
$4=7 x$
$x=\frac{4}{7}$
$4 \quad 39$ (b). Simplify and state the restrictions: $\quad \frac{6 x+30}{6+3 x} \div \frac{3(x+5)}{x^{2}-4}$
$\frac{6 x+30}{6+3 x} \cdot \frac{x^{2}-4}{3(x+5)}$
$\frac{6(x+5)}{3(2+x)} \cdot \frac{(x+2)(x-2)}{3(x+5)}$
$\frac{2(x-2)}{3}$
$x \neq-5,-2,2$

39(c). It takes Jason and Sean 6 minutes to shovel their driveway when they work together. When Jason works alone, he takes 5 minutes more to shovel the driveway than when he works alone.
(i) Set up a rational equation to model the situation.

$$
\frac{1}{t}+\frac{1}{t+5}=\frac{1}{6}
$$

(ii) Use your equation from (i) to determine how long it would take Sean to shovel the driveway when he works alone.
$\frac{6}{t}+\frac{6}{t+5}=1$
$\frac{6}{t} \cdot\left(\frac{t+5}{t+5}\right)+\frac{6}{t+5} \cdot\left(\frac{t}{t}\right)=1$
$\frac{6 t+30}{t^{2}+5 t}+\frac{6 t}{t^{2}+5 t}=1$
$\frac{6 t+30+6 t}{t^{2}+5 t}=1$
$12 t+30=t^{2}+5 t$
$t^{2}-7 t-30=0$
$(t-10)(t+3)=0$
$t=10$ or $t=-3$
t must be positive so Sean takes 10 minutes.

