## Section A - Selected Response (40 marks)

**Directions:** Place the letter corresponding to the correct answer on the answer sheet provided.

1. Which of the following are polynomial functions?

| Ι   | $y = x^3 - 2\sqrt{x} + 3$            |  |
|-----|--------------------------------------|--|
| II  | $y = x^3 - \frac{2}{x^2} - x - 2$    |  |
| III | $y = x^3 - 2x^{\frac{3}{2}} + x + 3$ |  |
| IV  | $y = x^3 - \frac{1}{2}x^2 - x + 3$   |  |

A) III only

- B) IV only
- C) I and IV only
- D) II and III only

2. Which sketch best represents the graph of  $y = ax^3 - bx^2 + cx + 4$  if a < 0?





C)



D)



3. Which of the following is **true** for the graph of a polynomial function with degree 4?

- A) There will be a minimum of one x-intercept.
- B) There will be a maximum of one x-intercept.
- C) There will be a minimum of four x-intercepts.
- D) There will be a maximum of four x-intercepts.

4. A polynomial function is sketched below, what is equation of this polynomial function?



- A)  $y = x(x-4)^2$ B)  $y = x(x+4)^2$ C)  $y = x^2(x-4)$ D)  $y = x^2(x+4)$
- 5. Which three expressions are factors of  $x^3 + 2x^2 16x 32$  ?

| Ι   | x-4 |
|-----|-----|
| Π   | x+4 |
| III | x-2 |
| IV  | x+2 |

A) I, II, III onlyB) I, II, IV onlyC) I, III, IV onlyD) II, III, IV only

- 6. A polynomial function P(x) is divided by x+3, and the remainder is 2. Which of the following points must be on the graph?
  - A) (-3, 2)B) (-3, 0)C) (2, -3)D) (3, 2)

7. Raj used synthetic division to divide a polynomial f(x) by x-2 as shown below.



Determine the value of k that will give a remainder of -1 as shown in the table.

- A) 1 B) 4 C) 5
- D) 6

8. What is the remainder when the function  $f(x) = x^3 - 3x^2 + 6$  is divided by x - 1?

- A) 0 B) 2 C) 4
- D) 6

9. What are the possible integral roots for  $f(x) = 2x^3 - x^2 + 5x - 12$ ?

A)  $\{1, 2, 3, 4, 6, 12\}$ B)  $\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\}$ C)  $\{\pm \frac{1}{2}, \pm \frac{3}{2}\}$ D)  $\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm \frac{1}{2}, \pm \frac{3}{2}\}$ 

10. If  $3x^3 + 2x^2 + x - 4$  is divided by x - 1, which of the following is true?

A) 
$$(x-1)(3x^2+5x+6) + \frac{2}{x-1} = 3x^3+2x^2+x-4$$
  
B)  $(x-1)(3x^2+5x+6) + \frac{-10}{x-1} = 3x^3+2x^2+x-4$   
C)  $(x-1)(3x^2-x+2) + \frac{-6}{x-1} = 3x^3+2x^2+x-4$   
D)  $(x-1)(3x^2-x) + \frac{-4}{x-1} = 3x^3+2x^2+x-4$ 

11. Which of the following graphs has a multiplicity of 2 at x = -1 and a multiplicity of 2 at x = 4 and a negative leading coefficient.



12. The graph of y = f(x) is stretched horizontally by a factor of  $\frac{1}{4}$ . Which equation represents the transformational graph?

A) 
$$y = \frac{1}{4}f(x)$$
  
B)  $y = 4f(x)$   
C)  $y = f\left(\frac{1}{4}x\right)$   
D)  $y = f(4x)$ 

13. The point P(4, 6) lies on the graph of y = f(x). What is the image point under the transformation

$$y = -\frac{1}{2}f(\frac{1}{2}(x+4))?$$
  
A) (4, -12)  
B) (4, -3)  
C) (-3, 4)  
D) (-2, -3)

14. Which of the following graphs is a function and has an inverse that is also a function?



15. What is the equation of the inverse of  $f(x) = 4x^2 + 10$ ?

A) 
$$f^{-1}(x) = \frac{\pm\sqrt{x-10}}{2}$$
  
B)  $f^{-1}(x) = \pm\sqrt{x-\frac{5}{2}}$   
C)  $f^{-1}(x) = \pm\sqrt{\frac{x-10}{2}}$   
D)  $f^{-1}(x) = \pm\sqrt{x-\frac{5}{2}}$ 

16. Given the graph of y = g(x), what is the range?



- A)  $\left[-5,6\right]$
- B) [-4,3]
- C) (-5, 6)
- D) (-4,3)

17. What is the vertical stretch factor of y = a(f(b(x))) when compared to y = f(x)?



18. Given mapping notation y = 2f(-3x+6)+1, what is the horizontal translation of y = f(x)?

A) 2 units leftB) 2 units rightC) 6 units leftD) 6 units right

19. Given the function  $f(x) = x^2 - 4x + 4$ , which of the following restriction must be applied to f(x) so that  $f^{-1}(x)$  is a function?

A)  $\{x / x \ge -2, x \in R\}$ B)  $\{x / x \ge 0, x \in R\}$ C)  $\{x / x \ge 2, x \in R\}$ D)  $\{x / x \ge 4, x \in R\}$ 

20. The graph of y = f(x) as shown below is transformed to x = f(y). Determine the invariant point(s).



- A) (0,3)
- B) (1,1)
- C) (2,-1)
- D) (1,1) and (2,-1)

21. Which of the following functions reflects  $y = \sqrt{x}$  on the y axis and transforms it 2 units to the left and 4 units up?

A) 
$$y = -\sqrt{x+2} + 4$$
  
B)  $y = -\sqrt{x-2} + 4$   
C)  $y = \sqrt{-(x+2)} + 4$   
D)  $y = -\sqrt{x+2} - 4$ 

22. Which function best represents the graph below ?



23. Which is true for the function  $y-3 = \sqrt{4x+8}$  when compared to  $y = \sqrt{x}$ ?

|    | Vertical Translation | Horizontal Translation |
|----|----------------------|------------------------|
| A) | 3                    | -8                     |
| B) | 3                    | -2                     |
| C) | -3                   | -2                     |
| D) | -3                   | 8                      |

24. If f(x) = -3x + 6, what is the domain of  $y = \sqrt{f(x)}$ ?

A) 
$$\{x / x \le -2, x \in R\}$$
  
B)  $\{x / x \le 2, x \in R\}$   
C)  $\{x / x \ge 0, x \in R\}$   
D)  $\{x / x \ge 2, x \in R\}$ 

25 Given the graph of  $f(x) = \sqrt{16 - x^2}$  as shown, which of the following is the graph of  $y = \sqrt{f(x)}$ ?



26. What are all the invariant points for the graph of  $f(x) = 4x^2$  and  $y = \sqrt{f(x)}$ ?

A) (0,0)  
B) 
$$\left(-\frac{1}{4},0\right)$$
, (0,0)  
C)  $\left(-\frac{1}{2},1\right)$ ,  $\left(\frac{1}{2},1\right)$   
D)  $\left(-\frac{1}{2},1\right)$ ,  $(0,0)$ ,  $\left(\frac{1}{2},1\right)$ 

27. If  $f(x) = x^2 - 49$ , what is the **domain** of  $y = \sqrt{f(x)}$ ?

A)  $\{x/x \in R\}$ B)  $\{x/x \ge 0, x \in R\}$ C)  $\{x/-7 \le x \le 7, x \in R\}$ D)  $\{x/x \le -7 \text{ or } x \ge 7, y \in R\}$ 

28. What is  $330^{\circ}$  as a radian measure?

A) 
$$\frac{11}{12}\pi$$
  
B)  $\frac{11}{6}\pi$   
C)  $\frac{11}{3}\pi$   
D)  $\frac{13}{12}\pi$ 

29. What is the length of an arc cut off by a  $\frac{3}{4}\pi$  sector in a circle with a diameter of 40 cm?

2π

A) 
$$\frac{15}{2}\pi$$
 cm  
B)  $15\pi$  cm  
C)  $30\pi$  cm  
D)  $\frac{160}{3}\pi$   
30. Solve for x:  $\cos x = \frac{\sqrt{3}}{2}$   $0 \le x \le$   
A)  $\frac{\pi}{6}$ ,  $\frac{5}{6}\pi$   
B)  $\frac{\pi}{6}$ ,  $\frac{11}{6}\pi$   
C)  $\frac{\pi}{3}$ ,  $\frac{2}{3}\pi$   
D)  $\frac{\pi}{3}$ ,  $\frac{5}{3}\pi$ 

31. Which expression represents all angles coterminal with a standard position angle measuring 120°?

A) 
$$\frac{5}{6}\pi \pm \pi n, n \in W$$
  
B) 
$$\frac{2}{3}\pi \pm \pi n, n \in W$$
  
C) 
$$\frac{5}{6}\pi \pm 2\pi n, n \in W$$
  
D) 
$$\frac{2}{3}\pi \pm 2\pi n, n \in W$$

32. In which quadrant is tan positive and csc negative?

A) I B) II C) III D) IV





34. Which of the following pairs of trigonometric ratios have the same value as sec 307°.

- A)  $sec(-53^{\circ})$  and  $sec(-127^{\circ})$
- B)  $sec(-53^{\circ})$  and  $-sec(127^{\circ})$
- C)  $-sec(53^\circ)$  and  $sec(-127^\circ)$
- D)  $-\sec(53^\circ)$  and  $-\sec(127^\circ)$

35. If angle A has a measure of  $\frac{4}{3}\pi$  radians. What are the exact values of cos A and sin A?

A) 
$$\cos A = -\frac{\sqrt{3}}{2}$$
 and  $\sin A = -\frac{1}{2}$   
B)  $\cos A = -\frac{\sqrt{3}}{2}$  and  $\sin A = \frac{1}{2}$   
C)  $\cos A = -\frac{1}{2}$  and  $\sin A = -\frac{\sqrt{3}}{2}$   
D)  $\cos A = -\frac{1}{2}$  and  $\sin A = \frac{\sqrt{3}}{2}$ 

36. Angle  $\theta$  is in the fourth quadrant with  $\tan \theta = -\frac{12}{5}$ . What is the exact value of  $\sin \theta$ ?

A) 
$$-\frac{12}{13}$$
  
B)  $-\frac{5}{13}$   
C)  $\frac{5}{13}$   
D)  $\frac{12}{13}$ 

37. What characteristic is different for the graphs of  $y = \sin x$  and  $y = \cos x$ ?

A) AmplitudeB) Horizontal Central AxisC) PeriodD) Y intercept

38. Given the function  $y = 2 \cos 3(x + 45^{\circ})$ , what is the amplitude of its graph?

A) 
$$\frac{1}{3}$$
  
B)  $\frac{1}{2}$   
C) 2  
D) 3

39. Given the function  $f(x) = 3 \sin\left(\frac{1}{2}x\right)$ , what is the period of its graph?

A) 120°

B) 180°

C) 720°

D) 1080°

40. What is the maximum value for the function  $y = -5 \sin(2x) + 3$ ?

A) -8

B) -2

C) 5

D) 8

## Section B - Constructed Response (40 marks)

**Directions:** Answer all questions on the examination paper and show your workings.

1. Sketch the graph of the function  $y = 2x^3 - 3x^2 - 3x + 2$  and clearly label the x intercept(s) and y intercept. (4 marks)



2. Write the equation for the graph of the polynomial function below that passes through the point (5, 30). (4 marks)



3. The length, width and height of a rectangular prism are x cm, (x + 4) cm and (x+5) cm respectively. Write an expression for the volume in the form  $f(x) = ax^3 + bx^2 + cx + d$  and find the dimension of the solid if the volume is 168 cm<sup>3</sup>. (4 marks) 4. Given the graph of the function y = f(x) shown, Sketch the graph of y = 2(f(-x)) - 3.

(4 marks)



5. The graph of y = f(x) with points A(-4, -3), B(-1, -6), C(3, 3), D(5, -3) is transformed so that A'(-8, 4), B'(-2, 5), C'(6, 2), D'(10, 4). Plot the points and determine the equation of the image function in the form y = a f(b(x-h)) + k. **(4 marks)** 



6. If f(x) = x - 2 sketch the graph of f(x) and  $y = \sqrt{f(x)}$  using a table of values. Label the invariant point(s). (4 marks)

| Х | f(x) |
|---|------|
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |

| ¥3 < 7 |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |



7. Solve graphically  $\sqrt{25-x^2} = 3$ 

X Y



| Х | Y |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |



8. Find the **exact** value for 
$$\frac{\cot\left(\frac{\pi}{3}\right) + \cos\left(\frac{5}{3}\pi\right)}{\csc(-240^{\circ})}$$

(4 marks)

9. Solve for  $\theta$ :  $2\cos^2 \theta - \cos \theta - 1 = 0$   $0 \le \theta < 2\pi$  (4 marks)

Page **19** of **20** 

10. Graph 
$$y = 5\left(\sin\left(\frac{1}{2}\left(x + \frac{3}{2}\pi\right)\right)\right) + 2$$
 (4 marks)

