Section A - Selected Response (40 marks)

Directions: Place the letter corresponding to the correct answer on the answer sheet provided.

1. Which of the following are polynomial functions?

I	$y=x^{3}-2 \sqrt{x}+3$
II	$y=x^{3}-\frac{2}{x^{2}}-x-2$
III	$y=x^{3}-2 x^{\frac{3}{2}}+x+3$
IV	$y=x^{3}-\frac{1}{2} x^{2}-x+3$

A) III only
B) IV only
C) I and IV only
D) II and III only
2. Which sketch best represents the graph of $y=a x^{3}-b x^{2}+c x+4$ if $a<0$?
A)

B)

C)

D)

3. Which of the following is true for the graph of a polynomial function with degree 4 ?
A) There will be a minimum of one x-intercept.
B) There will be a maximum of one x-intercept.
C) There will be a minimum of four x-intercepts.
D) There will be a maximum of four x-intercepts.
4. A polynomial function is sketched below, what is equation of this polynomial function?

A) $y=x(x-4)^{2}$
B) $y=x(x+4)^{2}$
C) $y=x^{2}(x-4)$
D) $y=x^{2}(x+4)$
5. Which three expressions are factors of $x^{3}+2 x^{2}-16 x-32$?

I	$x-4$
II	$x+4$
III	$x-2$
IV	$x+2$

A) I, II, III only
B) I, II, IV only
C) I, III, IV only
D) II, III, IV only
6. A polynomial function $P(x)$ is divided by $x+3$, and the remainder is 2 . Which of the following points must be on the graph?
A) $(-3,2)$
B) $(-3,0)$
C) $(2,-3)$
D) $(3,2)$
7. Raj used synthetic division to divide a polynomial $f(x)$ by $x-2$ as shown below.

$$
\begin{array}{llll}
21 & \begin{array}{llll}
1 & -3 & k & -5 \\
& & & \\
\hline
\end{array}
\end{array}
$$

Determine the value of \boldsymbol{k} that will give a remainder of -1 as shown in the table.
A) 1
B) 4
C) 5
D) 6
8. What is the remainder when the function $f(x)=x^{3}-3 x^{2}+6$ is divided by $x-1$?
A) 0
B) 2
C) 4
D) 6
9. What are the possible integral roots for $f(x)=2 x^{3}-x^{2}+5 x-12$?
A) $\{1,2,3,4,6,12\}$
B) $\{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\}$
C) $\left\{ \pm \frac{1}{2}, \pm \frac{3}{2}\right\}$
D) $\left\{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm \frac{1}{2}, \pm \frac{3}{2}\right\}$
10. If $3 x^{3}+2 x^{2}+x-4$ is divided by $x-1$, which of the following is true?
A) $(x-1)\left(3 x^{2}+5 x+6\right)+\frac{2}{x-1}=3 x^{3}+2 x^{2}+x-4$
B) $(x-1)\left(3 x^{2}+5 x+6\right)+\frac{-10}{x-1}=3 x^{3}+2 x^{2}+x-4$
C) $(x-1)\left(3 x^{2}-x+2\right)+\frac{-6}{x-1}=3 x^{3}+2 x^{2}+x-4$
D) $(x-1)\left(3 x^{2}-x\right)+\frac{-4}{x-1}=3 x^{3}+2 x^{2}+x-4$
11. Which of the following graphs has a multiplicity of 2 at $x=-1$ and a multiplicity of 2 at $x=4$ and a negative leading coefficient.
A)

B)

C)

D)

12. The graph of $y=f(x)$ is stretched horizontally by a factor of $\frac{1}{4}$. Which equation represents the transformational graph?
A) $y=\frac{1}{4} f(x)$
B) $y=4 f(x)$
C) $y=f\left(\frac{1}{4} x\right)$
D) $y=f(4 x)$
13. The point $P(4,6)$ lies on the graph of $y=f(x)$. What is the image point under the transformation $y=-\frac{1}{2} f\left(\frac{1}{2}(x+4)\right) ?$
A) $(4,-12)$
B) $(4,-3)$
C) $(-3,4)$
D) $(-2,-3)$
14. Which of the following graphs is a function and has an inverse that is also a function?
A)

B)

C)

D)

15. What is the equation of the inverse of $f(x)=4 x^{2}+10$?
A) $f^{-1}(x)=\frac{ \pm \sqrt{x-10}}{2}$
B) $f^{-1}(x)= \pm \sqrt{x-\frac{5}{2}}$
C) $f^{-1}(x)= \pm \sqrt{\frac{x-10}{2}}$
D) $f^{-1}(x)= \pm \sqrt{x}-\frac{5}{2}$
16. Given the graph of $y=g(x)$, what is the range?

A) $[-5,6]$
B) $[-4,3]$
C) $(-5,6)$
D) $(-4,3)$
17. What is the vertical stretch factor of $y=a(f(b(x))$ when compared to $y=f(x)$?

A) -3
B) -2
C) 2
D) 3
18. Given mapping notation $y=2 f(-3 x+6)+1$, what is the horizontal translation of $y=f(x)$?
A) 2 units left
B) 2 units right
C) 6 units left
D) 6 units right
19. Given the function $f(x)=x^{2}-4 x+4$, which of the following restriction must be applied to $f(x)$ so that $f^{-1}(x)$ is a function?
A) $\{x / x \geq-2, x \in R\}$
B) $\{x / x \geq 0, x \in R\}$
C) $\{x / x \geq 2, x \in R\}$
D) $\{x / x \geq 4, x \in R\}$
20. The graph of $y=f(x)$ as shown below is transformed to $x=f(y)$. Determine the invariant point(s).

A) $(0,3)$
B) $(1,1)$
C) $(2,-1)$
D) $(1,1)$ and $(2,-1)$
21. Which of the following functions reflects $y=\sqrt{x}$ on the y axis and transforms it 2 units to the left and 4 units up?
A) $y=-\sqrt{x+2}+4$
B) $y=-\sqrt{x-2}+4$
C) $y=\sqrt{-(x+2)}+4$
D) $y=-\sqrt{x+2}-4$
22. Which function best represents the graph below?

A) $y=\sqrt{-(x+4)}$
B) $y=\sqrt{-(x-4)}$
C) $y=-\sqrt{x+4}$
D) $y=-\sqrt{x-4}$
23. Which is true for the function $y-3=\sqrt{4 x+8}$ when compared to $y=\sqrt{x}$?

	Vertical Translation	Horizontal Translation
A)	3	-8
B)	3	-2
C)	-3	-2
D)	-3	8

24. If $f(x)=-3 x+6$, what is the domain of $y=\sqrt{f(x)}$?
A) $\{x / x \leq-2, x \in R\}$
B) $\{x / x \leq 2, x \in R\}$
C) $\{x / x \geq 0, x \in R\}$
D) $\{x / x \geq 2, x \in R\}$

25 Given the graph of $f(x)=\sqrt{16-x^{2}}$ as shown, which of the following is the graph of $y=\sqrt{f(x)}$?

A)

B)

C)

D)

26. What are all the invariant points for the graph of $f(x)=4 x^{2}$ and $y=\sqrt{f(x)}$?
A) $(0,0)$
B) $\left(-\frac{1}{4}, 0\right),(0,0)$
C) $\left(-\frac{1}{2}, 1\right),\left(\frac{1}{2}, 1\right)$
D) $\left(-\frac{1}{2}, 1\right),(0,0),\left(\frac{1}{2}, 1\right)$
27. If $f(x)=x^{2}-49$, what is the domain of $y=\sqrt{f(x)}$?
A) $\{x / x \in R\}$
B) $\{x / x \geq 0, x \in R\}$
C) $\{x /-7 \leq x \leq 7, x \in R\}$
D) $\{x / x \leq-7$ or $x \geq 7, y \in R\}$
28. What is 330° as a radian measure?
A) $\frac{11}{12} \pi$
B) $\frac{11}{6} \pi$
C) $\frac{11}{3} \pi$
D) $\frac{13}{12} \pi$
29. What is the length of an arc cut off by a $\frac{3}{4} \pi$ sector in a circle with a diameter of 40 cm ?
A) $\frac{15}{2} \pi \mathrm{~cm}$
B) $15 \pi \mathrm{~cm}$
C) $30 \pi \mathrm{~cm}$
D) $\frac{160}{3} \pi$
30. Solve for $x: \cos x=\frac{\sqrt{3}}{2} \quad 0 \leq x \leq 2 \pi$
A) $\frac{\pi}{6}, \frac{5}{6} \pi$
B) $\frac{\pi}{6}, \frac{11}{6} \pi$
C) $\frac{\pi}{3}, \frac{2}{3} \pi$
D) $\frac{\pi}{3}, \frac{5}{3} \pi$
31. Which expression represents all angles coterminal with a standard position angle measuring 120° ?
A) $\frac{5}{6} \pi \pm \pi n, n \in W$
B) $\frac{2}{3} \pi \pm \pi n, n \in W$
C) $\frac{5}{6} \pi \pm 2 \pi n, n \in W$
D) $\frac{2}{3} \pi \pm 2 \pi n, n \in W$
32. In which quadrant is tan positive and csc negative?
A) I
B) II
C) III
D) IV
33. Which of the following represents an angle in standard position measuring $\frac{5}{4} \pi$ radians?
A)

B)

C)

D)

34. Which of the following pairs of trigonometric ratios have the same value as $\sec 307^{\circ}$.
A) $\sec \left(-53^{\circ}\right)$ and $\sec \left(-127^{\circ}\right)$
B) $\sec \left(-53^{\circ}\right)$ and $-\sec \left(127^{\circ}\right)$
C) $-\sec \left(53^{\circ}\right)$ and $\sec \left(-127^{\circ}\right)$
D) $-\sec \left(53^{\circ}\right)$ and $-\sec \left(127^{\circ}\right)$
35. If angle A has a measure of $\frac{4}{3} \pi$ radians. What are the exact values of $\cos A$ and $\sin A$?
A) $\cos A=-\frac{\sqrt{3}}{2}$ and $\sin A=-\frac{1}{2}$
B) $\cos A=-\frac{\sqrt{3}}{2}$ and $\sin A=\frac{1}{2}$
C) $\cos A=-\frac{1}{2}$ and $\sin A=-\frac{\sqrt{3}}{2}$
D) $\cos A=-\frac{1}{2}$ and $\sin A=\frac{\sqrt{3}}{2}$
36. Angle θ is in the fourth quadrant with $\tan \theta=-\frac{12}{5}$. What is the exact value of $\sin \theta$?
A) $-\frac{12}{13}$
B) $-\frac{5}{13}$
C) $\frac{5}{13}$
D) $\frac{12}{13}$
37. What characteristic is different for the graphs of $y=\sin x$ and $y=\cos x$?
A) Amplitude
B) Horizontal Central Axis
C) Period
D) Y intercept
38. Given the function $y=2 \cos 3\left(x+45^{\circ}\right)$, what is the amplitude of its graph?
A) $\frac{1}{3}$
B) $\frac{1}{2}$
C) 2
D) 3
39. Given the function $f(x)=3 \sin \left(\frac{1}{2} x\right)$, what is the period of its graph?
A) 120°
B) 180°
C) 720°
D) 1080°
40. What is the maximum value for the function $y=-5 \sin (2 x)+3$?
A) -8
B) -2
C) 5
D) 8

Section B - Constructed Response (40 marks)

Directions: Answer all questions on the examination paper and show your workings.

1. Sketch the graph of the function $y=2 x^{3}-3 x^{2}-3 x+2$ and clearly label the x intercept(s) and y intercept.
(4 marks)

2. Write the equation for the graph of the polynomial function below that passes through the point $(5,30)$.
(4 marks)

3. The length, width and height of a rectangular prism are $x \mathrm{~cm},(x+4) \mathrm{cm}$ and $(x+5) \mathrm{cm}$ respectively. Write an expression for the volume in the form $f(x)=a x^{3}+b x^{2}+c x+d$ and find the dimension of the solid if the volume is $168 \mathrm{~cm}^{3}$. (4 marks)
4. Given the graph of the function $y=f(x)$ shown, Sketch the graph of $y=2(f(-x))-3$.
(4 marks)

5. The graph of $y=f(x)$ with points $A(-4,-3), B(-1,-6), C(3,3), D(5,-3)$ is transformed so that $A^{\prime}(-8,4), B^{\prime}(-2,5), C^{\prime}(6,2), D^{\prime}(10,4)$. Plot the points and determine the equation of the image function in the form $y=a f(b(x-h))+k$. (4 marks)

6. If $f(x)=x-2$ sketch the graph of $f(x)$ and $y=\sqrt{f(x)}$ using a table of values. Label the invariant point(s). (4 marks)

7. Solve graphically $\sqrt{25-x^{2}}=3 \quad$ (4 marks)

8. Find the exact value for $\frac{\cot \left(\frac{\pi}{3}\right)+\cos \left(\frac{5}{3} \pi\right)}{\csc \left(-240^{\circ}\right)}$

(4 marks)

9. Solve for θ : $\quad 2 \cos ^{2} \theta-\cos \theta-1=0 \quad 0 \leq \theta<2 \pi$
(4 marks)
10. Graph $y=5\left(\sin \left(\frac{1}{2}\left(x+\frac{3}{2} \pi\right)\right)\right)+2$
(4 marks)

