Factoring Polynomials
Type 1 : Removing the Greatest Common Factor(GCF)
Finding the Greatest Common Factor(GCF) is the process of identifying the numbers and variables that a group of terms have in common – in other words, what do they share ?

Example:  Factor 
	Step 1 : Factor each term completely.

		
	Step 2 : Find all factors that are common (same) in each term.

		

		The common factors are:  

		Therefore the GCF is  
	Step 3 : Pull out the GCF and then divide each term by it.

		
 (
GCF
) (
Divide each
Term by GCF
)
	

	Step 4 : Perform the division by simplifying each term.

		

















Type 2 : Factoring Binomials: Difference of Two Squares

Example :  Factor  
Check to see if the binomial is a difference.  Remember that difference indicates a   
           subtraction operation.  Each term in the binomial must be a perfect square.


	     is a “perfect square” because it equals  


	     is a “ perfect square” because it equals 
Step 1 : Find the square root of each term.

	    

Term #1 is the square root of the first term  and term #2 is the

	square root of the second term 


Step 2 : Rewrite your binomial as  


	    

Step 3 : Factor into two binomials – one plus and one minus
    

	   

	


	






Example:  

	Check: It is a difference and 

	


Note  : A binomial in the form  cannot be factored 
            because it’s a sum not a difference

















Type 3 : Trinomials in the form   (Coefficient for 

 is 1)
To factor trinomials in this form we must find 2 factors of c with a sum equal to b.

The trinomial  x2 + bx + c factors to 
     (x + one factor of c)(x + other factor of c)
Remember the two factors of c must have a sum equal to b


Example:  Factor  
 (
Find 2 factors of +15 with a sum of +8
)		
  

The factors of 15 are


			


Therefore   factors  to  









Example:  
 (
Find 2 factors of -24 with a sum of -2
)


The factors of -24 are:
-1 x 24	-1 + 24 = 23
1 x -24	1 + -24 = -23
-2 x 12	-2 + 12 = 10
2 x -12	2 + -12 = -10
-3 x 8		-3 + 8 = 5
3 x -8		3 + -8 = -5
-4 x 6		-4 + 6 = 2
4 x -6		4 + -6 = -2

The 2 factors we are looking for are  4 and -6

Therefore  x2 – 2x – 24  factors to  (x + 4)(x – 6)

Note : If you cannot find 2 factors of c with a sum of b then the trinomial cannot 
be factored or we say it’s prime.


Example:  







 Type 4 : Trinomials in the form   

(Coefficient for is greater than 1)

In trinomials  where a > 1 we cannot find 2 factors of c with a sum of b. These trinomials are factored by a method known as decomposition.


Example: 

Step 1 : Find the product of the a coefficient and c coefficient.


				



                     					

	Step 2 : Find 2 factors of your product with a sum equal to b
		   In this case we are finding 2 factors of 24 with a sum of 11 .
		   The factors we are looking for are 3 and 8. Using these factors


		   we are going to rewrite  to equal  


					
						


				       

	





Step 3 : Group the first 2 terms and the last 2 terms and remove a common
                         factor from each group.



				

	Step 4 : After you do this you should have a common binomial factor. Now we
		   can write our 2 factors.


				

 (
Multiply 3 and -2 to get -6. Two facto
rs of -6 with a sum of -5 are -6 and +1
.
)

Example: 		

			

							
					         


         


 (
Group and remove the GCF for each group
)







Type 5 : Perfect Squared Trinomials


A perfect squared trinomial written in the form   or 

 and when factored the two binomial factors are the same.

Take note that
1. The first and last terms are perfect squares.
2. The coefficient of the middle term is twice the square root of the first term
    multiplied by the squared root of the last term.

When we factor perfect squared trinomials we get






	Example       

        



Example      

	         









Type 6 : Trinomials with two Variables

These trinomials are factored the same way as trinomials in the form  x2 + bx + c
and  ax2 + bx + c  but each binomial factor will have a variable in each term.
 

Example:  
 (
Find 2 factors of 3 with a sum of 4
)			




The two factors will be in the form   where  ?  is replaced with the  two factors of 3 with a sum of 4.





 (
Factors are in the form
(? a 
+ ?
 b)(? a 
+ ?
 b) because a > 1
)Example:     
	      


 (
Find 2 factors of 6 with a sum of -7
)		    	
                             		
 (
Group and remove the GCF for each group
)
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