## Constant Functions

| a) Equation | Written in the form $y=b$ where $b$ is a constant |
| :--- | :--- |
| b) Degree | 0 (No $x$ term) |
| c) Shape of graph |  |
| d) Number of $y$-intercepts <br> (Point where graph <br> crosses $y$ axis) | One with coordinates (0, b) |
| e) Number of $x$-intercepts <br> (Point where graph <br> crosses $x$-axis) | None except for the line $y=0$ which is every point on the $x$-axis |
| f) Domain | \{x/x $x \in R\}$ |
| g) Range | \{value of "b" $\}$ |
| h) Number of Turning |  |
| Points |  |$\quad$| None |
| :--- |
| i) End Behavior |

## Linear Functions

| a) Equation | Written in the form $y=m x+b$ where $m$ is the slope and b is the y -intercept |
| :---: | :---: |
| b) Degree | 1 |
| c) Shape of graph |   |
| d) Number of y -intercepts | One with coordinates ( $0, \mathrm{~b}$ ) |
| e) Number of $\boldsymbol{x}$-intercepts | One |
| f) Domain | $\{x / x \in R\}$ |
| g) Range | $\{y / y \in R\}$ |
| h) Number of Turning Points | None |
| i) End Behavior | i) ( $\mathrm{m}>0$ ) Extends from Quadrant III to Quadrant I (Up in Quadrant I and Down in Quadrant III) <br> ii) ( $m<0$ ) Extends from Quadrant II to Quadrant IV (Up in Quadrant II and down in Quadrant IV) |
| Special Case | Equation $\mathrm{x}=$ " c " where c is a constant <br> One x intercept and no y intercept except for the line $\mathrm{x}=0$ where all points on the y axis are y intercepts |

## Quadratic Functions

| a) Equation | Written in Standard Form $y=a x^{2}+b x+c$ where " a " is the leading coefficient and " $c$ " is the constant term or in Vertex Form $y=a(x-h)^{2}+k$ Where $(h, k)$ is the vertex of the parabola. |
| :---: | :---: |
| b) Degree | 2 |
| c) Shape of graph |   |
| d) Number of y -intercepts | One with coordinates (0, c) |
| e) Number of $\boldsymbol{x}$-intercepts | Zero (Minimum Number) |
|  | One |
|  | Two (Maximum Number) |


| f) Domain | $\{x / x \in R\}$ |
| :--- | :--- |
| g) Range | $a>0 \Rightarrow\{y / y \geq$ "minimum value",$y \in R\}$ |
| h) Number of Turning <br> Points | One |
| i) End Behavior | i) (a>0)Extends from Quadrant II to Quadrant I <br> (Up in Quadrant I and up in Quadrant II) <br> ii) (a < 0)Extends from Quadrant III to Quadrant IV <br> (Down in Quadrant III and down in Quadrant IV) |

## Note:

1. Vertex Form $\quad y=a(x-h)^{2}+k$

Vertex ( $h, k$ ) $k$ is a maximum value if $a<0$
$k$ is a minimum value if $a>0$
2. Standard Form $\quad y=a x^{2}+b x+c$

$$
\begin{array}{r}
\text { Vertex }\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right) \text { is a maximum value if a }<0 \\
\\
f\left(-\frac{b}{2 a}\right) \text { is a minimum value if } \mathrm{a}>0
\end{array}
$$

## Cubic Functions

| a) Equation | Written in the form $y=a x^{3}+b x^{2}+c x+d$ where " $a$ " is the leading coefficient and " d " is the constant term |
| :---: | :---: |
| b) Degree | 3 |
| c) Shape of graph |   |
| d) Number of $y$-intercepts | One with coordinates (0, d) |
| e) Number of $x$-intercepts | One (Minimum Number) |
|  | Two |
|  | Three (Maximum Number) |


| f) Domain | $\{x / x \in R\}$ |
| :--- | :--- |
| g) Range | $\{y / y \in R\}$ |
| h) Number of Turning <br> Points | Zero $\rightarrow$ if there is one $x$ intercept <br> Two $\rightarrow$ if there is one or two $x$ intercepts |
| i) End Behavior | i) (a>0) Extends from Quadrant III to Quadrant I <br> (Down in Quadrant III and up in Quadrant I) <br> ii) (a < 0) Extends from Quadrant II to Quadrant IV <br> (Up in Quadrant II and down in Quadrant IV) |

