Mathematics 3200

Unit 1 Test

<u>Name</u> :		
<u>Part A</u> : Place the letter corresponding right.	g to the correct answer to each of the follow	wing in the blank at the
1. Which of the following is not a pol	1	
(A) $f(x) = x^4 - 3x^3 + \sqrt{2} x$ (C) $f(x) = \frac{x^4}{2} - \frac{x^3}{6} + 3x - 6$	(B) $f(x) = 5x^4 + 4x^2 + \pi$ (D) $f(x) = 3x^3 - 4x^2 - \frac{2}{x}$	
2. What is the restriction on x when 2	$2x^3 + 3x^2 - 6x$ is divided by $2x - 1$?	2
(A) $x \neq -1$ (C) $x \neq \frac{1}{2}$	(B) $x \neq -\frac{1}{2}$ (D) $x \neq 1$	
3. Given a polynomial function $P(x)$		3.
(A) -5 (C) $x-5$	(B) 5 (D) $x+5$	
4. What is the maximum number of re	eal roots that a cubic function can have?	4
(A) 1 (C) 3	(B) 2 (D) infinitely many	
5. What is the remainder when $-2x^3$	$-3x^2 + 6x - 5$ is divided by $x + 1$?	5

(B) -12

(D) -4

(A) -15

(C) -10

6. Determine the value of **k** if x + 2 is a factor of $x^3 + 10x^2 + 23x + k$.

6. ____

(A) -14

(B) -1

(C) 1

- (D) 14
- 7. Given the graph below, which is true for the polynomial function?

	Degree	Value of leading Coefficient	
(A)	3	negative	
(B)	3	positive	
(C)	5	negative	
(D)	5	positive	

8. What are the possible integral zeros for $f(x) = 3x^3 - 8x^2 + 5x - 35$?

8. ____

(A) $\{\pm 1, \pm 3\}$

(B) $\{3, -8, 5, -35\}$

(c) $\{1,5,7,35\}$

- (D) $\{\pm 1, \pm 5, \pm 7, \pm 35\}$
- 9. Which polynomial function best describes the graph below?

9. ____

- (A) $f(x) = -(x+3)^2(x-1)^2$
- (B) $f(x) = -(x-3)^2(x+1)^2$
- (C) $f(x) = (x+3)^2(x-1)^2$
- (D) $f(x) = (x-3)^2(x+1)^2$

- 10. Which of the following graphs has a multiplicity of 2 at x = -1, a single root at x = 4 and a negative leading coefficient.
- 10. ____

(A)

(B)

(C)

(D)

- 11. What are the x intercepts of the graph of the function $f(x) = 2x^3 + 3x^2 2x 3$?
- 11. ____

(A)
$$\left\{-\frac{3}{2}, -1, 1\right\}$$

(B)
$$\left\{-\frac{3}{2},1,1\right\}$$

(C)
$$\left\{-1, -1, \frac{3}{2}\right\}$$

(D)
$$\left\{-1, 1, \frac{3}{2}\right\}$$

- 12. Which polynomial equation has a single root at x = -3 and a double root at x = 2?
- 12. ____

(A)
$$x^3 - 4x^2 - 3x + 18 = 0$$

(B)
$$x^3 - x^2 - 8x + 12 = 0$$

(C)
$$x^3 + x^2 - 8x - 12 = 0$$

(D)
$$x^3 - 4x^2 - 3x - 18 = 0$$

- 13. Which of the following is a factor of the function $f(x) = x^3 4x^2 x + 4$?
- 13. ____

(A)
$$x-4$$

(B)
$$x-2$$

(c)
$$x + 2$$

(D)
$$x+4$$

14. If $2x^3 - 5x + 6$ is divided by x - 1, which of the following is true?

14. ____

(A)
$$(x-1)(2x^2-3x) + \frac{3}{x-1} = 2x^3-5x+6$$

(B)
$$(x-1)(2x^2+2x-3) + \frac{3}{x-1} = 2x^3-5x+6$$

(C)
$$(x-1)(2x^2-2x-3) + \frac{9}{x-1} = 2x^3-5x+6$$

(D)
$$(x-1)(2x^2+2x-3) + \frac{-9}{x-1} = 2x^3-5x+6$$

15. Given the table below, when is P(x) > 0?

15. ____

	X < -1	-1 < x < 2	2 < x < 3	X > 3
x- 2				
x + 1				
x - 3				
P(x)				

(A)
$$x < -1$$
, $x > 3$

(B)
$$-1 < x < 2$$
, $x > 3$

(c)
$$x < -1$$
, $2 < x < 3$

(D)
$$-1 < x < 2$$
, $2 < x < 3$

16. What is the range of the function graphed below?

16. ____

(A)
$$\{x/x \ge -2, x \in R\}$$

(B)
$$\{x/x \ge -5, x \in R\}$$

(c)
$$\{y / y \ge -2, y \in R\}$$

(D)
$$\{y / y \ge -5, y \in R\}$$

Part B: Answer each question and show all workings.

1. Factor $2x^3 - 7x^2 + 2x + 3$ completely.

2. Solve $x^3 - 5x^2 + 7x - 2 = 0$ leaving roots in exact simplest form.

3. The dimensions of a rectangular solid are shown.

(a) Write an expression for the volume in the form $f(x) = ax^3 + bx^2 + cx + d$

(b) What are the inadmissible values for x?

(c) If the volume of the solid is 60 cm², what is the dimension of the solid?

4. Sketch the graph of $f(x) = -x^3 + 3x^2 - 4$ clearly labeling the x intercept(s) and y intercept.

5. Write the equation for the graph of the polynomial function below.

