Mathematics 3200

Test Unit 2

Name:

<u>Part A</u>: Place the letter corresponding to the correct answer to each of the following on the blank at the right.

1. Which is true for the function y+3=f(2x+8) when compared to y=f(x)?

1. ____

	Horizontal Translation	Vertical Translation
A)	8 Left	3 Down
B)	4 Left	3 Down
C)	4 Right	3 Up
D)	8 Right	3 Up

2. Given the graph of y = g(x), what is the range?

2. ____

(A)
$$[-5,5]$$

(B)
$$[-4,5]$$

(C)
$$(-5,5)$$

(D)
$$(-4,5)$$

3. Given the graph of $f(x) = x^2 + 3$ below, what is the domain of $f^{-1}(x)$?

3. ____

$$(A) \left\{ x / x \ge 0, x \in R \right\}$$

(B)
$$\{x/x \ge 3, x \in R\}$$

(c)
$$\{y / y \ge 0, y \in R\}$$

(D)
$$\{y/y \ge 3, y \in R\}$$

4. What is the vertical stretch factor of y = a(f(b(x))) when compared to y = f(x)?

(A) $-\frac{1}{2}$

(B) $-\frac{1}{3}$

(c) $\frac{1}{3}$

- (D) $\frac{1}{3}$
- 5. What is the correct order of transformations for the graph of y = 2(f(-3(x-1))) when to 5. ____ compared to y = f(x)?
 - (A) Stretched vertically by a factor of 2 about the x axis
 - Stretched horizontally by a factor of 3 about the y axis
 - Reflected in the y axis
 - Horizontal translation of 1 unit right
 - (B) Horizontal translation of 1 unit right
 - Stretched vertically by a factor of 2 about the x axis
 - Stretched horizontally by a factor of $\frac{1}{3}$ about the y axis
 - Reflected in the y axis
- (C) Stretched vertically by a factor of 2 about the x axis
 - \bullet Stretched horizontally by a factor of $\frac{1}{3}$ about the y axis
 - Reflected in the y axis
 - Horizontal translation of 1 unit right
- (D) Stretched vertically by a factor of $\frac{1}{2}$ about the x axis
 - Stretched horizontally by a factor of $\frac{1}{3}$ about the y axis
 - Reflected in the x axis
 - Horizontal translation of 1 unit right

- 6. Which mapping notation transforms y = f(x) into $y = \frac{1}{2}f(-2(x+4)) + 6$?
- 6. ____

- (A) $(x, y) \rightarrow \left(-\frac{1}{2}x 4, 2y + 6\right)$
- (B) $(x, y) \rightarrow (-2x+4, 2y+6)$
- (C) $(x, y) \rightarrow \left(-\frac{1}{2}x 4, \frac{1}{2}y + 6\right)$ (D) $(x, y) \rightarrow \left(-2x 4, \frac{1}{2}y 6\right)$
- 7. Given the function f(x) = 5x 6, what is $f^{-1}(x)$?

7. ____

(A) $f^{-1}(x) = 5x - 6$

(B) $f^{-1}(x) = \frac{1}{5}x + \frac{6}{5}$

(C) $f^{-1}(x) = \frac{1}{5}x + 6$

- (D) $f^{-1}(x) = \frac{1}{5x-6}$
- 8. The point (2, -3) is on the graph of y = f(x), what is the image point for the transformation y+1=2(f(x-3)) ?
- 8. ____

(A) (5, -7)

(B) (1, -2)

(c) (-2, -4)

- (D) (0,3)
- 9. Given the function $f(x) = (x+4)^2 6$, which of the following restriction must be applied to f(x) so that $f^{-1}(x)$ is a function?
 - (A) $\{x/x \ge 4, x \in R\}$

(B) $\{x/x \ge -4, x \in R\}$

(c) $\{x/x \ge -6, x \in R\}$

- (D) $\{y/y \ge -6, y \in R\}$
- 10. Given the function $f(x) = 2x^2 + 10$, what is $f^{-1}(x)$?

10. ____

(A) $f^{-1}(x) = \pm \sqrt{\frac{1}{2}x - 10}$

(B) $f^{-1}(x) = \pm \sqrt{\frac{1}{2}}x + 10$

(C) $f^{-1}(x) = \pm \sqrt{\frac{x-10}{2}}$

(D) $f^{-1}(x) = \pm \sqrt{\frac{x+10}{2}}$

11. Which of the following functions has an inverse that is a function?

11. ____

(A)

(B)

(C)

(D)

12. What are zeros of the function y = f(x) after the transformation of y = f(-2x)?

(A) $\{-4, 8\}$

(B) $\{-1, 2\}$

(c) $\{4, -8\}$

(D) $\{1, 2\}$

13. Which function best represents y = g(x) when compared to y = f(x)?

13. ____

(A)
$$y = \frac{1}{2} f(x+2) + 3$$

(B)
$$y = \frac{1}{2}f(x-2) + 3$$

(C)
$$y = \frac{1}{2} f(x+2) - 3$$

(D)
$$y = \frac{1}{2}f(x-2) - 3$$

14. Which of the following is the graph of the inverse of y = f(x)?

14. ____

(A)

(B)

(C)

(D)

15. Which is true for the function y+2=-3 f(4x+8) when compared to y=f(x)?

	Horizontal Stretch Factor	Vertical Stretch Factor
(A)	$\frac{1}{4}$	-3
(B) (C)	$\frac{1}{4}$	3
(D)	4	-3
(-)	4	$\frac{1}{3}$

Part B: Answer all questions and show your workings.

1. Given the graph of the function y = f(x) shown, Sketch the graph of y = 2 f(-3(x+1)) - 2. (4 marks)

2. The graph of y=f(x) with points A(5,3), B(3,6), C(-1,-3) is transformed so that A'(-9,-1), B'(-5,0), C'(3,-3). Plot the points and determine the equation of the image function in the form $y=a\,f(b(x-h))+k$. (4 marks)

3. Determine the equation of y = g(x) when compared to y = f(x). (3 marks)

4. Given the graph of the function y=f(x) below, sketch the graph of the inverse of $y=3\,f(-2(x-2))-1$. (4 marks)

5. (a) If $f(x) = 2x^2 + 12x + 11$, what restriction could be placed on f(x) so that $f^{-1}(x)$? (2 marks)

(b) Find $f^{-1}(x)$ with the restricted domain for the equation in part (a). (3 marks)