Mathematics 3200

Test Unit 2

Name:

\qquad

Part A: Place the letter corresponding to the correct answer to each of the following on the blank at the right.

1. Which is true for the function $y+3=f(2 x+8)$ when compared to $y=f(x)$?
2. \qquad

	Horizontal Translation	Vertical Translation
A)	8 Left	3 Down
B)	4 Left	3 Down
C)	4 Right	3 Up
D)	8 Right	3 Up

2. Given the graph of $y=g(x)$, what is the range?
3. \qquad

(A) $[-5,5]$
(B) $[-4,5]$
(C) $(-5,5)$
(D) $(-4,5)$
4. Given the graph of $f(x)=x^{2}+3$ below, what is the domain of $f^{-1}(x)$?
5. \qquad

(A) $\{x / x \geq 0, x \in R\}$
(B) $\{x / x \geq 3, x \in R\}$
(C) $\{y / y \geq 0, y \in R\}$
(D) $\{y / y \geq 3, y \in R\}$
6. What is the vertical stretch factor of $y=a(f(b(x))$ when compared to $y=f(x)$?
7. \qquad

(A) $-\frac{1}{2}$
(B) $-\frac{1}{3}$
(C) $\frac{1}{3}$
(D) $\frac{1}{3}$
8. What is the correct order of transformations for the graph of $y=2(f(-3(x-1))$ when to
9. \qquad compared to $y=f(x)$?
(A) • Stretched vertically by a factor of 2 about the x axis

- Stretched horizontally by a factor of 3 about the y axis
- Reflected in the y axis
- Horizontal translation of 1 unit right
(B) • Horizontal translation of 1 unit right
- Stretched vertically by a factor of 2 about the x axis
- Stretched horizontally by a factor of $\frac{1}{3}$ about the y axis
- Reflected in the y axis
(C) • Stretched vertically by a factor of 2 about the x axis
- Stretched horizontally by a factor of $\frac{1}{3}$ about the y axis
- Reflected in the y axis
- Horizontal translation of 1 unit right
(D) • Stretched vertically by a factor of $\frac{1}{2}$ about the x axis
- Stretched horizontally by a factor of $\frac{1}{3}$ about the y axis
- Reflected in the x axis
- Horizontal translation of 1 unit right

6. Which mapping notation transforms $y=f(x)$ into $y=\frac{1}{2} f(-2(x+4))+6$?
7. \qquad
(A) $(x, y) \rightarrow\left(-\frac{1}{2} x-4,2 y+6\right)$
(B) $(x, y) \rightarrow(-2 x+4,2 y+6)$
(C) $(x, y) \rightarrow\left(-\frac{1}{2} x-4, \frac{1}{2} y+6\right)$
(D) $(x, y) \rightarrow\left(-2 x-4, \frac{1}{2} y-6\right)$
8. Given the function $f(x)=5 x-6$, what is $f^{-1}(x)$?
(A) $f^{-1}(x)=5 x-6$
(B) $f^{-1}(x)=\frac{1}{5} x+\frac{6}{5}$
(C) $f^{-1}(x)=\frac{1}{5} x+6$
(D) $f^{-1}(x)=\frac{1}{5 x-6}$
9. The point $(2,-3)$ is on the graph of $y=f(x)$, what is the image point for the
10.

\qquad transformation $y+1=2(f(x-3))$?
(A) $(5,-7)$
(B) $(1,-2)$
(C) $(-2,-4)$
(D) $(0,3)$
9. Given the function $f(x)=(x+4)^{2}-6$, which of the following restriction must be applied
9. \qquad to $f(x)$ so that $f^{-1}(x)$ is a function?
(A) $\{x / x \geq 4, x \in R\}$
(B) $\{x / x \geq-4, x \in R\}$
(C) $\{x / x \geq-6, x \in R\}$
(D) $\{y / y \geq-6, y \in R\}$
10. Given the function $f(x)=2 x^{2}+10$, what is $f^{-1}(x)$?
10. \qquad
(A) $f^{-1}(x)= \pm \sqrt{\frac{1}{2} x-10}$
(B) $f^{-1}(x)= \pm \sqrt{\frac{1}{2} x+10}$
(C) $f^{-1}(x)= \pm \sqrt{\frac{x-10}{2}}$
(D) $f^{-1}(x)= \pm \sqrt{\frac{x+10}{2}}$
11. Which of the following functions has an inverse that is a function ?
(A)

(B)

(C)

(D)

(D)
12. What are zeros of the function $y=f(x)$ after the transformation of $y=f(-2 x)$?
11. \qquad

12. \qquad

(A) $\{-4,8\}$
(B) $\{-1,2\}$
(C) $\{4,-8\}$
(D) $\{1,2\}$
13. \qquad

(A) $y=\frac{1}{2} f(x+2)+3$
(B) $y=\frac{1}{2} f(x-2)+3$
(C) $y=\frac{1}{2} f(x+2)-3$
(D) $y=\frac{1}{2} f(x-2)-3$
14. Which of the following is the graph of the inverse of $y=f(x)$?
14. \qquad

(A)

(B)

(C)

(D)

15. Which is true for the function $y+2=-3 f(4 x+8)$ when compared to $y=f(x)$?
15. \qquad

	Horizontal Stretch Factor	Vertical Stretch Factor
(A)	$\frac{1}{4}$	-3
(B)	$\frac{1}{4}$	3
(C)	4	-3
(D)	4	$\frac{1}{3}$

Part B: Answer all questions and show your workings.

1. Given the graph of the function $y=f(x)$ shown, Sketch the graph of $y=2 f(-3(x+1))-2$.
(4 marks)

2. The graph of $y=f(x)$ with points $A(5,3), B(3,6), C(-1,-3)$ is transformed so that $A^{\prime}(-9,-1), B^{\prime}(-5,0), C^{\prime}(3,-3)$. Plot the points and determine the equation of the image function in the form $y=a f(b(x-h))+k$. (4 marks)

3. Determine the equation of $y=g(x)$ when compared to $y=f(x)$. (3 marks)

4. Given the graph of the function $y=f(x)$ below, sketch the graph of the inverse of $y=3 f(-2(x-2))-1$. (4 marks)

5. (a) If $f(x)=2 x^{2}+12 x+11$, what restriction could be placed on $f(x)$ so that $f^{-1}(x)$? ($\mathbf{2}$ marks)
(b) Find $f^{-1}(x)$ with the restricted domain for the equation in part (a). (3 marks)
