Mathematics 3200

Test 3 (Radical Functions)

Part A: Place the letter in the blank at the right that corresponds to the correct answer to each of the following.

1. Which of the following functions transforms $y=\sqrt{x}, 3$ units to the right and 6 units up?
2. \qquad
(A) $y=\sqrt{x-3}+6$
(B) $y=\sqrt{x+3}+6$
(C) $y=\sqrt{x-3}-6$
(D) $y=\sqrt{x+3}-6$
3. Which function best represents the graph below?

(A) $y=\sqrt{-x}-3$
(B) $y=\sqrt{-x}+3$
(C) $y=\sqrt{x}-3$
(D) $y=\sqrt{x}+3$
4. Which is true for the function $y=-2 \sqrt{3 x-6}$ when compared to $y=\sqrt{x}$?
5. \qquad $\frac{\text { Horizontal Stretch Factor }}{-\frac{1}{2}}$ Vertical Stretch Factor
3
(A)

+

(B)
(C)
(D)
$-\frac{1}{2}$
$\frac{1}{2}$
$\frac{1}{2}$ $\frac{1}{3}$
)
4. The point $(4,2)$ is on the graph of $y=\sqrt{x}$, what is the image point under the
2. \qquad
4. \qquad transformation $y=2 \sqrt{4(x-1)}+2$?
(A) $(2,6)$
(B) $(17,6)$
(C) $(15,2)$
(D) $(0,6)$
5. What are the invariant points for the graph of $f(x)=x+3$ and $y=\sqrt{f(x)}$?
(A) $(-3,0),(-2,1)$
(B) $(3,0),(2,1)$
(C) $(0,-3),(1,-2)$
(D) $(0,3),(1,2)$
6. If $f(x)=x^{2}-16$, what is the domain of $y=\sqrt{f(x)}$?
5. \qquad
6. \qquad
(A) $\{x / x \in R\}$
(B) $\{x / x \geq-16, x \in R\}$
(C) $\{x /-4 \leq x \leq 4, x \in R\}$
(D) $\{x / x \leq-4$ or $x \geq 4, x \in R\}$
7. If $f(x)=2 x+5$, which of the following is true for $y=\sqrt{f(x)}$?
7. \qquad

	Domain	Range
(A)	$\{x / x \in R\}$	$\{y / y \in R\}$
(B)	$\left\{x / x \geq-\frac{5}{2}, x \in R\right\}$	$\{y / y \in R\}$
(C)	$\left\{x / x \geq-\frac{5}{2}, x \in R\right\}$	$\{y / y \geq 0, y \in R\}$
(D)	$\{x / x \geq 0, x \in R\}$	$\left\{y / y \geq-\frac{5}{2}, y \in R\right\}$

8. If $g(x)=\sqrt{5 x-10}$, what translation is performed on $f(x)=\sqrt{x}$ to get the graph of $g(x)$?
9. \qquad
(A) 10 units right
(B) 10 units left
(C) 2 units left
(D) 2 units right
10. What are all the invariant points for the graph of $f(x)=4 x^{2}+3 x$ and $y=\sqrt{f(x)}$?
11. \qquad
(A) $(0,0),(1,7)$
(B) $\left(-\frac{3}{4}, 0\right),(0,0)$
(C) $\left(\frac{1}{4}, 1\right),(-1,1)$
(D) $(-1,1),\left(-\frac{3}{4}, 0\right),(0,0),\left(\frac{1}{4}, 1\right)$
12. The graph of the function $y=\sqrt{x}$ is stretched horizontally by a factor of 2 and translated
13. \qquad 3 units left. What is the domain of the transformed function?
(A) $\{x / x \geq-3, x \in R\}$
(B) $\left\{x / x \geq-\frac{3}{2}, x \in R\right\}$
(C) $\{x / x \geq-1, x \in R\}$
(D) $\left\{x / x \geq \frac{3}{2}, x \in R\right\}$

Part B : Answer each question and show all workings.

1. If $f(x)=2-x$ sketch the graph of $f(x)$ and $y=\sqrt{f(x)}$ using a table of values. Label the invariant point(s).

X	$y=f(x)$
2	
1	
-2	
-7	

X	$y=\sqrt{f(x)}$

2. If $f(x)=x^{2}-4$ sketch the graph of $f(x)$ and $y=\sqrt{f(x)}$ using a table of values. Label the invariant points.

X	$f(x)$

X	$\sqrt{f(x)}$

3. Solve graphically $\sqrt{25-x^{2}}=4$

4. Solve $\sqrt{x+3}=x+1$

X	Y

X	Y

